USENIX ATC '25

Roaming Free in the VR World with MP²

Yifei Xu, Xumiao Zhang, Yuning Chen, Pan Hu, Xuan Zeng, Zhilong Zheng, Xianshang Lin, Yanmei Liu, Songwu Lu, Z. Morley Mao, Wan Du, Dennis Cai, Ennan Zhai, Yunfei Ma

Presenter: Yifei Xu July 8, 2025

What's Free-Roaming VR

- Gaming, virtual tourism, training, education, etc.
- Wireless streaming is preferred due to the weight, battery, and temperature considerations of the headset

What's needed for Free-Roaming VR Streaming

- Mobility: Allows users to roam across multiple access points (APs)
- Scalability: Supports up to tens of users
- Efficiency: Meets bandwidth (e.g., 100 Mbps) & latency (e.g., 20 ms) requirements for VR applications

Wi-Fi becomes the go-to choice: cost and throughput

A case study with:

- Steam VR platform
- ALVR (popular open-source VR streaming solution)
- XLINK (SOTA multipath transport protocol)
- ROG Rapture GT-AXE11000 (high-end gaming Wi-Fi router)

(a) High handover latency

(a) High handover latency

(b) Unstable bitrate

(a) High handover latency

(b) Unstable bitrate

(c) Imbalanced loads

Our Answer: MP² (<u>Multi-Path for Multi-Player</u>)

A centralized overlay system that

- has a global view of the entire stack, and
- coordinates link / path / bitrate decisions across users on different APs

Observations

#1 - Centralization beats decentralization

• Coordinate decisions across (i) users and (ii) network layers

#2 - Single Wi-Fi is insufficient

- Hundred-ms level network outage upon handover
- Interference, congestion, and signal degradation

#3 - User-space implementation simplifies deployment

- OS kernel modifications and special hardware are undesired
- Easier adaptation to evolving wireless technologies

Data Plane: MP² Tunnel Client / Server

- Built on top of multipath QUIC tunnels, leveraging 2 Wi-Fi interfaces
- Mask the complexity of path/AP management & packet delivery
- Route VR traffic according to the decisions from the control plane

Control Plane: MP² Controller

- Collects global cross-layer information: Wi-Fi PHY and VR application data
- Orchestrates cross-layer decisions to optimize global QoE: AP association (link-layer), path selection (transport-layer), and bitrate guidance (application-layer)
- Coordinates streams to ensure smooth enforcement

All in the user space!

- No modification to the kernel
- Can be implemented with low-cost commercial Wi-Fi hardware

Coordinated Seamless Migration

Path Warmup

- Before migrations, MP² sends a small probing traffic over the target link
 - -> Keeps the Wi-Fi radio active

Coordinated Seamless Migration

Path Warmup

- Before migrations, MP² sends a small probing traffic over the target link
 - -> Keeps the Wi-Fi radio active

Redundant Transmission

During migrations, MP² adopts a transient full-redundant transmission on both paths

 > Minimizes packet loss and latency

Coordinated Seamless Migration

Path Warmup

- Before migrations, MP² sends a small probing traffic over the target link
 - -> Keeps the Wi-Fi radio active

Redundant Transmission

During migrations, MP² adopts a transient full-redundant transmission on both paths

 > Minimizes packet loss and latency

• Bitrate "Guidance"

- After migrations, the ABR algorithms can take > 10 sec to converge
- MP² proactively enforces a maximum bitrate **cap** for all users on that involved AP
 - -> Faster convergence
 - -> ABR continues to adapt: MP² can coexist seamlessly with non-VR traffic

Control Problem Formulation

Control Inputs

- RSSI from clients
- Statistics of VR frames from servers

Control Outputs

- **AP selection:** which AP (path) should each stream be routed through
- **Bitrate guidance:** what bitrate should each stream run at
- Optimization Goal

$$\boldsymbol{Q} = \sum_{k=1}^{K} \boldsymbol{B}_{k} * (1 - \sum_{i=1}^{3} w_{i} * \boldsymbol{P}_{k,i})$$

Bitrate for stream k Lag rate of stream k

Challenges for the Controller

- Closed-form prediction of tail latency
 - Without this, the tail latency has to be obtained from simulation with recorded video traces: inefficient
- Intractable search space
 - Search space grows exponentially as the number of user grows
 - 4 APs, 12 users, 10 bitrate levels to search, 0.1 sec per simulation -> 1.7x10¹⁸ sec!

MP² Controller: Frame Size Modeling

• When k streams compete for the same AP

- Worst case: frames from all streams collide
 - worst_latency = $\sum_{i=1}^{k}$ frame_size_k / link_rate
- If sizes all follow Gaussian distribution: $\sum_{i=1}^{k}$ frame_size_k is still Gaussian
- Closed-form worst-case tail latency available

MP² Controller: Frame Size Modeling

• When k streams compete for the same AP

- Worst case: frames from all streams collide
 - worst_latency = $\sum_{i=1}^{k}$ frame_size_k / link_rate
- If sizes all follow Gaussian distribution: $\sum_{i=1}^{k}$ frame_size_k is still Gaussian
- Closed-form worst-case tail latency available

- Gaussian Mixture Modeling can closely track the mixed distribution
- The above still hold

MP² Controller: Pruning and Partitioning

Link quality-based pruning

- Skip bottom *p* percent of poor links
- Location-based partitioning
 - Partition users into location-based cells
 - Optimize arrangement locally within each cell
 - With bounded cell size, search space grows linearly with user count

Less than 1-sec compute for 48 users, 16 APs

Implementation

• VR Streaming Platform

- **GPU Servers:** Linux PC + Steam VR + ALVR server
- **Headsets:** Linux PC + Monado (cross-platform XR runtime) + ALVR client

• MP² Components

- MP² Controller: run on any one of the servers
- **MP² Tunnel Server:** run on any one of the servers
- **MP² Tunnel Client:** run on every headset
- All portable applications for Linux PC

Evaluation: Seamless Migration

23

Evaluation: Large-Scale Emulation

Figure 10: 16 AP \times 48 client Emulation. MP² significantly outperforms XLINK + ALVR and different flavors of MPQUIC (MinRTT, RE, ECF) + ALVR on both latency (35× improvement over 2nd place), bitrate (1.56×), and QoE (1.86×).

Evaluation: User Study

vast majority of users.

Summary

- Handover latency, bitrate fluctuation, and imbalanced loads are three roadblocks to multiplayer free-roaming VR
- MP² introduces a user-space, centralized overlay system that:
 - has a global view of the entire stack, and
 - coordinates link / path / bitrate decisions across users on different APs
- Yes, the only hardware gap is a second Wi-Fi interface on the headset!

Thank you!