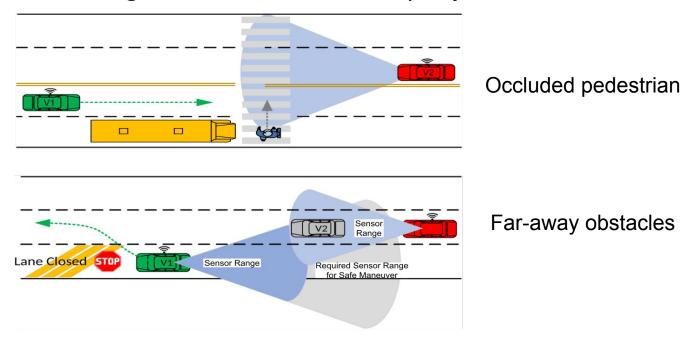
Robust Real-time Multi-vehicle Collaboration on Asynchronous Sensors

Qingzhao Zhang[†]*, Xumiao Zhang[†]*, Ruiyang Zhu[†]*,

Fan Bai[‡], **Mohammad Naserian**[‡], Z. Morley Mao[†]

(*equal contributions) [†]University of Michigan [‡]General Motors

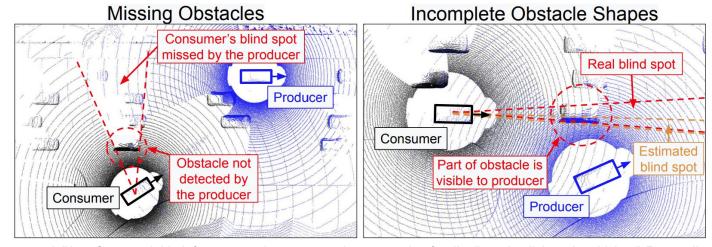

Oct. 3, 2023

Why cooperative perception?

Limited sensing on occluded or far-away objects

Motivation 1: synchronization problem

• In multi-vehicle collaboration, the LiDAR images to be merged is not captured on the same timestamp.

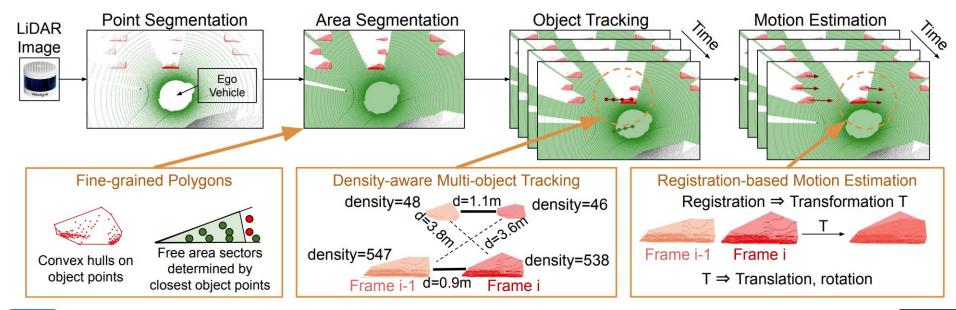

Consumer is the vehicle receiving LiDAR data; provider is the vehicle providing LiDAR data.

Motivation 2: inaccurate blind spot estimation

- Existing systems trend to share sensor data about blind spots only.
 - However, inaccurate blind spot estimation compromise the sharing efficiency
 - e.g., AutoCast^[1] estimate blind spots based on observed objects and naive ray

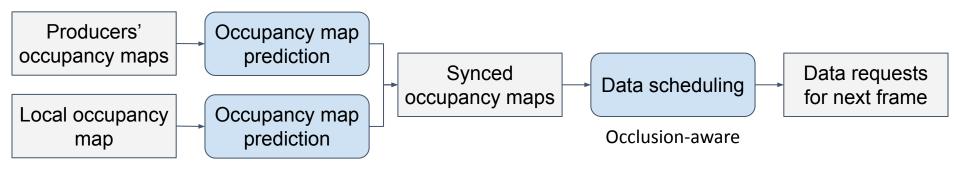
[1] Qiu, Hang, et al. "AutoCast: scalable infrastructure-less cooperative perception for distributed collaborative driving." *Proceedings of the 20th Annual International Conference on Mobile Systems, Applications and Services*. 2022.

Overview


- Q: Synchronization problem?
- A: Prediction
 - Leverage prediction algorithms to synchronize LiDAR point clouds.
- Q: Accurate blind spot estimation?
- A: On-demand data sharing
 - Let consumers proactively request data they need.

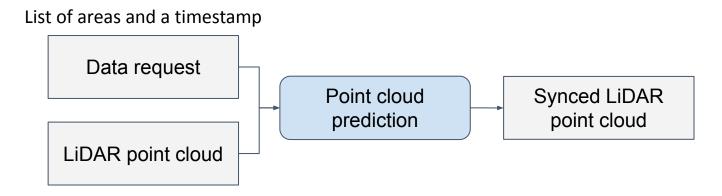
For all CAVs, share occupancy maps

• The map labels occupied, free, and occluded areas



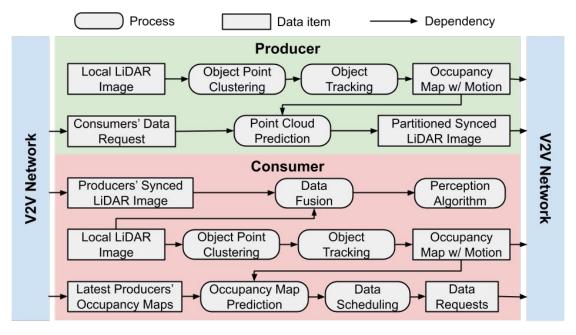
For consumers, prepare data requests

- Make a plan of data sharing for the next LiDAR cycle
 - i.e., which producer share which area



For producers, share requested data

 Share the latest point cloud on the requested areas, and synchronize the point clouds to the requested timestamp.



Execute all processes in parallel

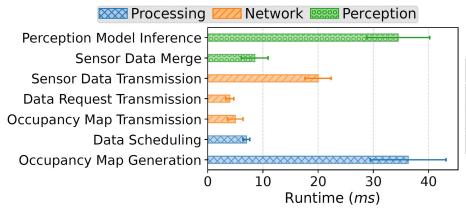
Compared with single-CAV perception, the only delay is from data

fusion.

RAO Perception Benefits and performance

- RAO achieves the best perception accuracy compared with EMP^[1] and AutoCast^[2].
 - We used various simulated and real-world datasets,
 - We used PointPillars as the perception model.

Traffic Scene	Perception AP@0.5/AP@0.7			
	Local-only	EMP	AutoCast	RAO
DAIR-V2X-C	48.99/40.78%	48.82/40.68%	50.36/41.18%	53.11/43.49%
CARLA-SUMO	48.63/37.17%	64.08/54.26%	64.91/51.50%	74.79/62.01%
- Town05	40.68/30.18%	48.63/38.25%	63.61/39.88%	69.81/58.72%
- Town06	65.46/48.30%	73.22/53.22%	67.55/58.47%	81.72/65.19%
- Town10HD	40.12/32.58%	64.34/57.18%	69.90/52.50%	78.53/65.25%
Mcity	51.51/41.13%	64.88/50.50%	65.76/48.32%	69.13/51.25%


^[1] Zhang, Xumiao, et al. "Emp: Edge-assisted multi-vehicle perception." *Proceedings of the 27th Annual International Conference on Mobile Computing and Networking*. 2021.

^[2] Qiu, Hang, et al. "AutoCast: scalable infrastructure-less cooperative perception for distributed collaborative driving." *Proceedings of the 20th Annual International Conference on Mobile Systems, Applications and Services.* 2022.

System Overhead - Latency & Data Volume

- The total avg latency of all the modules is 80.82 ms (14.40 ms variance)
- RAO can process LiDAR at regular full frame rate of 10 FPS
- RAO incurs similar data overhead compared to the STOA approach

Metrics	EMP	AutoCast	RAO
LiDAR Points	8320±3228	3140±2171	3110±2501
Control data (KB)	< 0.1	<0.1	1.77±0.50
Total Volume (KB)	24.37±9.46	9.17±6.36	10.90±7.32

Summary

- RAO is a **real-time occlusion-aware** cooperative perception system running on **asynchronous** sensors.
- RAO tackles two problems in existing cooperative perception.
 - Use prediction methods to mitigate sensor asynchronization.
 - Use on-demand data sharing to optimize data scheduling.

Thank You!

