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Why cooperative perception?

e Limited sensing on occluded or far-away objects

= Occluded pedestrian

Far-away obstacles




Motivation 1: synchronization problem

e In multi-vehicle collaboration, the LiDAR images to be merged is not
captured on the same timestamp.
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Motivation 2: inaccurate blind spot estimation

e Existing systems trend to share sensor data about blind spots only.
o However, inaccurate blind spot estimation compromise the sharing efficiency

o e.g., AutoCast'!! estimate blind spots based on observed objects and naive ray
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[1] Qiu, Hang, et al. "AutoCast: scalable mfrastructure less cooperative perception for distributed collaborative driving." Proceedings of the 20

Annual International Conference on Mobile Systems, Applications and Services. 2022.




Overview

e Q: Synchronization problem?

e A: Prediction
o Leverage prediction algorithms to synchronize LiDAR point clouds.

e (Q: Accurate blind spot estimation?

e A: On-demand data sharing
o Let consumers proactively request data they need.




For all CAVs, share occupancy maps

e The map labels occupied, free, and occluded areas
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For consumers, prepare data requests

e Make a plan of data sharing for the next LiDAR cycle
o i.e., which producer share which area
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For producers, share requested data

e Share the latest point cloud on the requested areas, and synchronize the
point clouds to the requested timestamp.
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Execute all processes in parallel

e Compared with single-CAV perception, the only delay is from data

fusion.
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RAO Perception Benefits and performance

[1] Zhang, Xumiao, et al. "Emp: Edge-assisted multi-vehicle perception." Proceedings of the 27th Annual International Conference on Mobile

RAO achieves the best perception accuracy compared with EMP™! and AutoCast!?..
* We used various simulated and real-world datasets,
* We used PointPillars as the perception model.

Traffic Scene

Perception AP@0.5/AP@0.7

Local-only EMP AutoCast RAO
DAIR-V2X-C 48.99/40.78% | 48.82/40.68% | 50.36/41.18% | 53.11/43.49%
CARLA-SUMO | 48.63/37.17% | 64.08/54.26% | 64.91/51.50% | 74.79/62.01%
- Town05 40.68/30.18% | 48.63/38.25% | 63.61/39.88% | 69.81/58.72%
- Town06 65.46/48.30% | 73.22/53.22% | 67.55/58.47% | 81.72/65.19%
- Town10HD 40.12/32.58% | 64.34/57.18% | 69.90/52.50% | 78.53/65.25%
Mcity 51.51/41.13% | 64.88/50.50% | 65.76/48.32% | 69.13/51.25%

Computing and Networking. 2021.

[2] Qiu, Hang, et al. "AutoCast: scalable infrastructure-less cooperative perception for distributed collaborative driving." Proceedings of the 20th
Annual International Conference on Mobile Systems, Applications and Services. 2022.
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System Overhead - Latency & Data Volume

e The total avg latency of all the modules is 80.82 ms (14.40 ms variance)

e RAO can process LiDAR at regular full frame rate of 10 FPS
e RAO incurs similar data overhead compared to the STOA approach
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Metrics EMP AutoCast RAO
LiDAR Points 8320+3228 | 3140+2171 | 3110+2501
Control data (KB) <0.1 <0.1 1.77+0.50
Total Volume (KB) | 24.37+9.46 | 9.17+6.36 | 10.90+7.32
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Summary

e RAO is a real-time occlusion-aware cooperative perception system
running on asynchronous sensors.

e RAO tackles two problems in existing cooperative perception.
o Use prediction methods to mitigate sensor asynchronization.
o Use on-demand data sharing to optimize data scheduling.

Thank You!




