MPBond: Efficient Network-level Collaboration Among Personal Mobile Devices

Xiao Zhu Jiachen Sun Xumiao Zhang

Y. Ethan Guo[†] Feng Qian[‡] Z. Morley Mao

University of Michigan

†Uber Technologies, Inc.

Uber

†University of Minnesota − Twin Cities ♣️

Ubiquitous Personal Mobile Devices

Multi-device ownership

Group activities

Network-level Collaboration Helps!

Improve throughput

Tackle per-device rate limit

Extend wireless range

Need a software framework to bridge networking hardware ©

Collaboration Meets Multipath Transport

Simultaneous data transfers over multiple network paths (aka, subflows)

Subflows traverse multiple mobile devices

Need "distributed" multipath transport

Challenges for An Efficient Collaboration Scheme

- Proper management of heterogeneous devices and links
- Efficient leverage of helper devices to improve network performance
- Judicious distribution of data over remote and local paths
- Appropriate interfaces to apps and users
- Transparency of the scheme to client and server apps

Existing Collaboration Schemes Fall Short

- Lack of flexibility
 - Tethering+MPTCP [1], inverse multiplexing [2]
 - Application modifications [3, 4, 5]
- Suboptimal Performance
 - Under fluctuating remote and local network conditions [1, 2]
 - Due to idle times incurred by chunk-based data distribution [3-5]
 - Due to suboptimal scheduling decisions [1-5]
- Excessive energy consumption
 - Long download time [1-5]
 - Prolonged remote or/and local link radio-on time [1-5]
- [1] Using cooperation for low power low latency cellular connectivity, CoNEXT 2014
- [2] Improving TCP performance over wireless networks with collaborative multi-homed mobile hosts, MobiSys 2005
- [3] Combine: leveraging the power of wireless peers through collaborative downloading, MobiSys 2007
- [4] MicroCast: Cooperative video streaming on smart-phones, MobiSys 2012
- [5] Cool-tether: energy efficient on-the-fly wifi hot-spots using mobile phones, CoNEXT 2009

Our Solution: MPBond

A distributed multipath transport system for efficient network-level collaboration

Subflow Management

 Primary-centric pipe establishment to reduce helper-primary hop count

Handshake is similar to MPTCP but with additional control messages

over the pipe

Buffer Management and Connection Split

w/o TCP split and buffering v.s. w/ TCP split and buffering

Data Distribution over Multiple Paths

- Realized by a multipath scheduler
- Optimal multipath scheduling requires simultaneous data completion at the receiver
- MinRTT is the default scheduler for MPTCP by selecting the path with available space in congestion window (cwnd) and the minimum RTT

Why Not the Default MinRTT Scheduler?

- MinRTT fails to achieve simultaneous subflow completion in MPBond
 - Due to the lack of consideration of the pipe

How about modifying the subflow availability condition?

Would lose the capability of buffering

Pipe-aware Multipath Scheduler (PAMS)

- Challenge: enable buffering at the helper while achieving simultaneous subflow completion
- Making packet arrival time estimation pipe-aware
 - Pipe-aware delay: The time it takes for a packet scheduled over a given subflow at a given time to arrive at the receiver

Deriving the Pipe-aware Delay (PAD)

- PAD of the direct subflow $(PAD_1): OWD_{ps} + \frac{B_S}{Th_{ps}}$
- For an indirect subflow $(PAD_i, i > 1)$

$$PAD_{i} = \begin{cases} OWD_{ps} + \frac{B_{s}}{Th_{ps}}, & \text{if } i = 1\\ OWD_{hs} + \frac{B_{s} + B_{p}}{Th_{p}} + OWD_{p}, & \text{if } i > 1, \frac{B_{p}}{B_{s}} + 1 > \frac{Th_{p}}{Th_{hs}}\\ OWD_{hs} + \frac{B_{s}}{Th_{hs}} + OWD_{p}, & \text{if } i > 1, \frac{B_{p}}{B_{s}} + 1 \leq \frac{Th_{p}}{Th_{hs}} \end{cases}$$

The PAMS Algorithm

- Leverage PAD to make scheduling decisions
 - minPAD: select the path with available space in cwnd and minimum PAD
 - Useful when there is large amount of remaining data to send (Case 1)
 - When there is only small amount of remaining data (Case 2)?
 - Defer the scheduling!
 - Data Reinjection

User/App Interfaces and Policy Engine

- Users
 - Per-app whitelist, resource usage, prioritization
- Apps
 - Optional APIs for device/pipe monitoring and management
- Dual mode

Evaluation

- MPBond prototype on Android smartphones and smartwatches
- Comparison baselines
 - Single device, kibbutz [1], COMBINE [2]
- Evaluation setup
 - Applications: file download, video streaming
 - Networks: emulated (with tc) and real WiFi and LTE
 - Devices: smartphones (Pixel 2, Nexus 6P) and a smartwatch (LG Urbane 2nd)

- [1] Using cooperation for low power low latency cellular connectivity, CoNEXT 2014
- [2] Combine: leveraging the power of wireless peers through collaborative downloading, MobiSys 2007

Evaluation: Stable network conditions

- File download
 - Primary: Pixel 2, Helper 1: Nexus 6P, Helper 2: LG Urbane 2nd
 - PS-Path: 8Mbps, HS-Path: 10Mbps, pipe: 5Mbps

1. Using more devices reduces download time, with reasonable increase of total energy 2. MPBond reduces energy and download time compared to kibbutz and COMBINE

Evaluation: Varying network conditions

Replay real WiFi and LTE bandwidth traces

In-the-wild experiments

MPBond reduces the file download time by 13%-35%, which also translates to lower energy consumption, compared to kibbutz and COMBINE

Evaluation: Video streaming

- Three video sources: Big Buck Bunny w/ 2-sec segments (B2), Tears of Steel w/ 2-sec segments (T2) and 6-sec segments (T6)
- PS-Path: 5Mbps, HS-Path: 10Mbps, pipe: 5Mbps

MPBond reduces energy consumption compared to kibbutz with same # of devices
 With 3 devices, MPBond improves the video bitrate by up to 118% compared to kibbutz

Conclusion

- Mobile devices need network-level collaboration
- Collaboration made efficient & easy by MPBond
 - Distributed multipath transport
 - Device, connection, and buffer management
 - Judicious pipe-aware scheduling
- MPBond prevails over existing collaboration schemes
 - Performance, energy efficiency, and flexibility

Thank you! Questions?

