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Short Video Service on CDN
• CDN handles 70% global traffic.
• Short Video as major workload
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Goal: improve user QoE and reduce bandwidth cost 



Approach #1: application-layer strategies
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Approach #1: application-layer strategies
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• Implemented at client & out of control for CDN



Approach #2: transport-layer strategies
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Parameter-tuning of CC Invent a new CC

• Adjust a specific type of CC (Congestion Control)
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Parameter-tuning of CC Invent a new CC

• Adjust a specific type of CC (Congestion Control)

• Can’t fix inherent design limitations • Inadequate production testing

A single CC is insufficient; measurement reveals no CC is always optimal !



A/B test of Cubic vs BBR across region

Rebuffer rate bandwidth cost
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• Vary significantly across regions



A/B test of Cubic vs BBR across time
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Cubic vs BBR over time
on one CDN node

• Fluctuate over time



A/B test of Cubic vs BBR across time
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Need dynamic & adaptive approach for congestion control selection (CCS)
à ML promising solution

Cubic vs BBR over time
on one CDN node

• Fluctuate over time



Our approach
• AliCCS: the first ML-based Congestion Control Selection (CCS)
framework for Short Video delivery in production CDN
• surpass each CC’s limitations
• worst-case guarantee (select from well-established CCs)
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Key challenges in applying ML for CCS in 
production CDN
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• Impractical 1 model per node
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Key challenges in applying ML for CCS in 
production CDN

InterpretabilityScalability & Generalization Reduce Inference delay
input output
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• Impractical 1 model per node • Troubleshooting & iterate • Minimize impact of 
model Inference delay
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1. Model Scalability and generalization

2. Model prediction interpretability

3. Model inference overhead



Key observation: what impacts CCS?
• Cubic vs BBR based on network types
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4G Wi-Fi



Key observation on feature analysis

19

4G Wi-Fi



Key observation on feature analysis
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Reduce CCS to a learning task that infers network types from TCP statistics



Model design: learn a generalized model
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• Issue with hidden states in the network
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Model design: learn a generalized model
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• Issue with hidden states in the network
• E.g., cwnd as feature X

Inconsistency causes trouble in learning unified model !

Y:Wi-Fi ßà X: high cwnd Y:Wi-Fi ßà X: low cwndData:



Model design: key intuition
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• Key observation: one-to-one mapping between /24 IP prefix and 
Internet path (or hidden states)



Model design: key intuition
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• Representation invariant to /24 IP prefix (thus invariant to hidden 
states)



Model design: key intuition
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• Representation invariant to /24 IP prefix (thus invariant to hidden 
state)

Realized via generative adversarial 
network(GAN)



Model design: GAN-based realization

Clustering algorithm
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            from
/24 Prefix 1
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1. Model Scalability and generalization

2. Model prediction interpretability

3. Model inference overhead



Interpretability design: distillation
• Distillation to decision trees
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Inference model

Trainning Dataset

Predicted Probability
(Y0, Y1)

Features X

Features X

+
(X, Y0, Y1) Multi-output

Regression Tree
Model Training

Multi-output Regression Tree

Shapley 
analysis

identify Key Feature for 
prediction error

Samples with
error



Interpretability design: distillation
• Real example: low accuracy for small ISP 
• Identified over-reliance on TCP MSS
• Reduced MSS reliance è boost accuracy.
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Inference model
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1. Model Scalability and generalization

2. Model prediction interpretability

3. Model inference overhead



Key observations to reduce overhead

Consistent CCS in  IP prefix similarityConsistent CCS in temporal stability

a /24 IP prefix dominated by either
Wi-Fi or 4G for more than 2 hours
with 87% probability
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Save CPU: Cache inference results for 
specific paths for hours.

Save Memory: aggregate cached results 
under the same IP prefix into a single entry 

CCS stays the same for hours CCS stays the same under /24 
prefix



AliCCS design: reduce inference overhead
• Inference & save in cache



AliCCS design: reduce inference overhead
• Search in cache, avoiding sequential inference



Inference efficiency
• Comparison with Non-optimized online inference

Processing delay Max. QPS

Baseline: online inference 10417 ns 7.6k

Online-o!ine decoupled 162 ns 18.4k

Improvement 64.30→ 2.42→
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Evaluation: real-world deployment
• 400 nodes, almost all provinces in China & southeast Asia
• Compare AliCCS vs baseline (statically use Cubic)
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Evaluation: real-world deployment
• Avg. rebuffer-rate reduction of 4.9% 
• 2%–3% reduction can ensure customer retention
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Evaluation: real-world deployment
• Retransmission rate reduction of 25.5%–174.3%
• Avg. reduction of 62.7%
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Evaluation: trace-driven comparison
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• Compare with state of the art
• List of baselines:
• Pytheas: online learning
• Disco: tree-based ML model
• Confignator: tree-based ML model + bayeasian optimization
• Oracle: theoretical upper bound



Evaluation: trace-driven comparison

Rebuffer-rate Retransmission rate
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All similar in low percentile (good network condition)



Evaluation: vs Disco & Confignator

Rebuffer-rate Retransmission rate
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Evaluation: vs Disco & Confignator

Rebuffer-rate Retransmission rate
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AliCCS outperforms model with GAN regularization in poor networks, 
due to their model’s overfitting to good conditions



Evaluation: vs Pytheas
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Rebuffer-rate Retransmission rate



Evaluation: vs Pytheas
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Rebuffer-rate Retransmission rate

Although slight gain in extremely poor conditions, 
AliCCS avoids complex overhead in estimating reward of Pytheas



Lessons learned
• Maintain throughput stability: Crucial for short video CC design
• Deploy a fallback strategy: helpful to avoid degrading below 
default configuration in low-confidence scenarios
• Expect higher gain in IPv6: enhanced CCS performance in IPv6 
observed
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