Learning Production-Optimized Congestion Control Selection for Alibaba Cloud CDN

Xuan Zeng¹*, Haoran Xu²*, Chen Chen¹*, Xumiao Zhang¹, Xiaoxi Zhang², Xu Chen², Guihai Chen³, Yubing Qiu¹, Yiping Zhang¹, Chong Hao¹, Ennan Zhai¹

¹Alibaba Cloud ²Sun Yat-sen University ³Nanjing University

Short Video Service on CDN

- CDN handles 70% global traffic.
- Short Video as major workload

Short Video Service on CDN

- CDN handles 70% global traffic.
- Short Video as major workload

Approach #1: application-layer strategies

Approach #1: application-layer strategies

• Implemented at client & out of control for CDN

Approach #2: transport-layer strategies

• Adjust a specific type of CC (Congestion Control)

Approach #2: transport-layer strategies

• Adjust a specific type of CC (Congestion Control)

- Can't fix inherent design limitations
- Inadequate production testing

Approach #2: transport-layer strategies

• Adjust a specific type of CC (Congestion Control)

Parameter-tuning of CC

Ð

Invent a new CC

A single CC is insufficient; measurement reveals no CC is always optimal !

Can't fix inherent design limitations
Inadequate production testing

A/B test of Cubic vs BBR across region

• Vary significantly across regions

A/B test of Cubic vs BBR across time

• Fluctuate over time

A/B test of Cubic vs BBR across time

• Fluctuate over time

2.0

1.5

ffer rate

Need dynamic & adaptive approach for congestion control selection (CCS) \rightarrow ML promising solution $\stackrel{\neq}{\geq} 0.0 \stackrel{+}{-} \stackrel{+}$

Time (days)

Cubic vs BBR over time on one CDN node

Our approach

• AliCCS: the first ML-based Congestion Control Selection (CCS) framework for Short Video delivery in production CDN

- surpass each CC's limitations
- worst-case guarantee (select from well-established CCs)

Key challenges in applying ML for CCS in production CDN

Key challenges in applying ML for CCS in production CDN

Scalability & Generalization

• Impractical 1 model per node

Key challenges in applying ML for CCS in production **CDN**

- output
- Impractical 1 model per node
- Troubleshooting & iterate •

Key challenges in applying ML for CCS in production CDN

- Impractical 1 model per node
- Troubleshooting & iterate

• Minimize impact of model Inference delay

1. Model Scalability and generalization

2. Model prediction interpretability

3. Model inference overhead

Key observation: what impacts CCS?

• Cubic vs BBR based on network types

Key observation on feature analysis

• Issue with hidden states in the network

- Issue with hidden states in the network
 - E.g., cwnd as feature X

- Issue with hidden states in the network
 - E.g., cwnd as feature X

Data: Y:Wi-Fi $\leftarrow \rightarrow$ X: high cwnd

Y:Wi-Fi \leftrightarrow X: low cwnd

- Issue with hidden states in the network
 - E.g., cwnd as feature X

Data: Y:Wi-Fi $\leftarrow \rightarrow$ X: high cwnd

Y:Wi-Fi $\leftarrow \rightarrow$ X: low cwnd

Inconsistency causes trouble in learning unified model !

Model design: key intuition

• Key observation: one-to-one mapping between /24 IP prefix and Internet path (or hidden states)

Model design: key intuition

 Representation invariant to /24 IP prefix (thus invariant to hidden states)

Model design: key intuition

 Representation invariant to /24 IP prefix (thus invariant to hidden state)

Model design: GAN-based realization

1. Model Scalability and generalization

2. Model prediction interpretability

3. Model inference overhead

Interpretability design: distillation

• Distillation to decision trees

Interpretability design: distillation

- Real example: low accuracy for small ISP
 - Identified over-reliance on TCP MSS
 - Reduced MSS reliance → boost accuracy.

1. Model Scalability and generalization

2. Model prediction interpretability

3. Model inference overhead

Key observations to reduce overhead

Consistent CCS in temporal stability

a /24 IP prefix dominated by either Wi-Fi or 4G for more than 2 hours with 87% probability

CCS stays the same for hours

Save CPU: Cache inference results for specific paths for hours.

Save Memory: aggregate cached results under the same IP prefix into a single entry

AliCCS design: reduce inference overhead

• Inference & save in cache

AliCCS design: reduce inference overhead

• Search in cache, avoiding sequential inference

Inference efficiency

• Comparison with Non-optimized online inference

	Processing delay	Max. QPS
Baseline: online inference	10417 ns	7.6k
Online-offline decoupled	$162 \mathrm{ns}$	18.4k
Improvement	$64.30 \times$	$2.42 \times$

Evaluation: real-world deployment

- 400 nodes, almost all provinces in China & southeast Asia
- Compare AliCCS vs baseline (statically use Cubic)

Evaluation: real-world deployment

- Avg. rebuffer-rate reduction of 4.9%
- 2%–3% reduction can ensure customer retention

Evaluation: real-world deployment

- Retransmission rate reduction of 25.5%–174.3%
- Avg. reduction of 62.7%

Evaluation: trace-driven comparison

- Compare with state of the art
- List of baselines:
 - Pytheas: online learning
 - Disco: tree-based ML model
 - Confignator: tree-based ML model + bayeasian optimization
 - Oracle: theoretical upper bound

Evaluation: trace-driven comparison

All similar in low percentile (good network condition)

Evaluation: vs Disco & Confignator

Evaluation: vs Disco & Confignator

AliCCS outperforms model with GAN regularization in poor networks, due to their model's overfitting to good conditions

p95

p99

Evaluation: vs Pytheas

Evaluation: vs Pytheas

Although slight gain in extremely poor conditions, AliCCS avoids complex overhead in estimating reward of Pytheas

0 RetransRetransRetransRetrans mean p75 p85 p95 p99

Retransmission rate

Lessons learned

- Maintain throughput stability: Crucial for short video CC design
- Deploy a fallback strategy: helpful to avoid degrading below default configuration in low-confidence scenarios
- Expect higher gain in IPv6: enhanced CCS performance in IPv6 observed