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Background: Collaborative Vehicular Perception
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LiDAR 3D Point Clouds, Drivable space detection, Exchange sensor data among CAVs
2D Camera Images, etc. Object detection, etc. to extend sensing capabilities




Limitations of Existing V2V-only CVP

* Lack of scalability for larger number of vehicles ! % 3
« AVR and Cooper!"-?l focus only on a 2 vehicles scenario

» Creates additional overheads by sharing N-1 copies or use WiFi Broadcast
mode Bl which creates congestion in V2V network

« WiFi broadcast does not have MAC layer ACKs (no congestion control by

default)®!
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(2) >= 3 vehicles, N * (N-1) (3) >= 3 vehicles, through
[1] AVR: Augmented vehicular reality. MobiSys 2018. bandwidth Sharlng wireless broadcast

[2] Chen, Qj, et al. "Cooper: Cooperative perception for connected autonomous vehicles based on 3d point clouds." IEEE ICDCS, 2019.
[3] CarSpeak: A Content-Centric Network for Autonomous Driving. SIGCOMM 2012. 4
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Limitation of Existing V2I-only CVP

« V2| (cellular) network conditions ! can vary temporally and

spatially

o ldeally, C-V2X communication expects fast and stable network performance
o Different carriers have different performance coverages
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Need for a hybrid V2V+V2| architecture

* Harbor: A Hybrid architecture for collaborative vehicular perception
that adaptively uses V2V and V2I connectivity

* Key idea: bridge V2I-disconnected vehicles (helpees) by

strategically pairing them with V2I-connected vehicles (helpers)
through V2V
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Harbor design

* A hybrid architecture for
collaborative vehicular sensing

* Leverages both V2V and V2|
network access

* Flexibly manages V2V and V2I
connections

* Strategic helper assignment

* Timely detection result delivery
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Strategic helper assignment - Goal

« Goal: Efficiently assign helpers to helpees to speedup sensor data
upload
« Different helpers have different V2| and V2V conditions

* End-to-end upload performance depends on network performance on
both the V2V path and the V2| path

» Key idea: Identify performance impacting factors for V2V and V2| and
combine these factors to score the assignments
e Direct measures: V2V & V2| bandwidth

* Indirect measures: factors that affects V2V & V2| bandwidth (e.g. distance,
interference)



ldentify performance impacting factors

« Both V2V and V2| paths’ performance matter
o V2l bandwidth can be measured from V2| path

— Measured from ongoing data transfer to the edge server

o However, V2V bandwidth is hard to quantify
m Measured bandwidth by establishing connections? — Large overhead, can be
iInaccurate

— Using indirect measures and heuristics

« Performance impacting factors
o V2l path: V2l bandwidth and load of helper

o V2V path: Physical distance between helper and helpee, V2V network
interference
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Strategic helper assignment - Overview

« Harbor jointly considers different factors and selects an
assignment with the analytical model
- A heuristic score function to merge effects caused by different factors
- Normalize each factor to avoid a single factor becoming dominant
- Run periodically to adapt to vehicle mobility & network state changes

Score(ay) = Sgjst(ag) + Sinsr(ag)
Score(A) = f(Score(ay), ..., Score(am))

Assignment pair ax = (e;,7;) maximize Score(A) s.t. Cp,(a) >0, Vae A

A X

helpee helper

Assignment A ={ay,as,...,a,}
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Timely delivery of detection results

* It is vital to deliver remote detection results
back to vehicles in time
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Timely delivery of results - MAC layer prioritization

*In V2V network, sensor data transmission (by helpee) and detection
result delivery (from helper) contend for the shared wireless medium

* Key Idea: Prioritize small but latency sensitive traffic over bulk data
transfer

: .. Sensor data stream: bandwidth intensive
Higher Priority Higher Priority
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End-to-end evaluation - Emulation

o Evaluation Metrics

o End-to-end detection latency (s) and detection accuracy
o Compare with different baseline schemes
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End-to-end evaluation — Real-world Driving

o Harbor outperforms EMP, AVR and CarSpeak by reducing 18% - 37%
of detection latency and improving 8.0% - 11.0% on accuracy.
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End-to-end Evaluation — Mcity Testbed

« Harbor achieves the best perception accuracy compared with
EMP! and AVRI]

« Harbor delivers better autonomous driving outcome by increasing
the driving reaction time and reducing crash scenarios

Table 3: Collaborative perception accuracy under different

collaboration schemes.

Table 4: Additional driving reaction time (compared to Local-
only) and outcome of different collaboration schemes.

Traffic Scene

Object Detection Acc./Drivable Space Detection Acc.

Traffic Scene

Additional Reaction Time (s)/Driving Outcome

EMP

AVR

Harbor

- Lane merge

71.25/40.78%

T2.92/3981%

80.46/47.43%

Local-only EMP AVR Harbor
Testbed-Overall | 42.67/40.77% | 69.84/57.89% | 69.90/52.53% | 82.08/70.67%
- Right turn 28.91/33.28% | 59.60/53.84% | 42.66/49.59% | 77.93/71.44%
- Left turn A 34.60/44.57% | 81.16/59.79% | 79.49/57.25% | 83.55/63.87%
- Left turn B 35.94/44.48% | 79.50/58.12% | 61.53/55.86% | 81.30/72.89%

87.57/74.51%

Testbed-Overall
- Right turn

- Left turn A

- Left turn B

- Lane merge

+0.76/1 crash
+ 0.69/safe-pass
+ 1.05/safe-pass
+0.73/crash
+ 0.57/near-miss

+0.58 /1 crash
+ 0.41/crash
+ 0.20/safe-pass
+ 1.13/safe-pass
+ 0.57/near-miss

+ 1.26/0 crash
+ 1.60/safe-pass
+ 1.23/safe-pass
+ 1.42/safe-pass
+ 0.79/safe-pass

Notes: A near-miss occurs when the ego and target vehicle pass within 3 m of each other.
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Conclusion

* Develop Harbor, a hybrid system architecture for cooperative vehicular
perception

* Harbor strategically assigns helpers to helpees
* Harnesses performance impacting factors from different network layers

* Harbor performs timely detection result delivery
* App-layer deadline awareness and MAC-layer message prioritization

* Harbor outperforms V2V and V2I collaboration solutions

* Reduces up to 57.1% in end-to-end latency and improves up to 12% in detection
accuracy

* Result in significantly fewer collisions under dangerous driving scenarios
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