Boosting Collaborative Vehicular Perception on the Edge with Vehicle-to-Vehicle Communication

Ruiyang Zhu, Xiao Zhu, Anlan Zhang[†], Xumiao Zhang, Jiachen Sun, Feng Qian[†], Hang Qiu[‡], Z. Morley Mao, Myungjin Lee^{*}

> University of Michigan [†]University of Southern California [‡]University of California Riverside ^{*}Cisco Research

Presenter: Bo Chen, University of Illinois at Urbana-Champaign

Background and Motivation

- System Design
- Evaluation Results
- Conclusion

Background: Collaborative Vehicular Perception

Extended Perception in occluded area

Perception (<u>CVP</u>)

Exchange sensor data <u>among CAVs</u> to extend sensing capabilities

Limitations of Existing V2V-only CVP

- Lack of scalability for larger number of vehicles [1, 2, 3]
 - AVR and Cooper^[1, 2] focus only on a **2** vehicles scenario
 - Creates additional overheads by sharing *N-1* copies or use WiFi Broadcast mode^[3], which creates congestion in V2V network
 - WiFi broadcast does not have MAC layer ACKs (no congestion control by default)^[3]

(1) 2 vehicles

(2) >= 3 vehicles, N * (N-1)
bandwidth sharing

(3) >= 3 vehicles, throughwireless broadcast

[1] AVR: Augmented vehicular reality. MobiSys 2018.

[2] Chen, Qi, et al. "Cooper: Cooperative perception for connected autonomous vehicles based on 3d point clouds." IEEE ICDCS, 2019.[3] CarSpeak: A Content-Centric Network for Autonomous Driving. SIGCOMM 2012.

Limitation of Existing V2I-only CVP

- V2I (cellular) network conditions ^[1] can vary temporally and spatially
 - Ideally, C-V2X communication expects fast and stable network performance
 - Different carriers have different performance coverages

Need for a hybrid V2V+V2I architecture

- Harbor: A <u>Hybrid</u> <u>ar</u>chitecture for colla<u>bor</u>ative vehicular perception that adaptively uses V2V and V2I connectivity
- Key idea: bridge V2I-disconnected vehicles (<u>helpees</u>) by strategically pairing them with V2I-connected vehicles (<u>helpers</u>) through V2V

Pure V2I Mode

V2V+V2I Mode

Background and Motivation

System Design

- Evaluation Results
- Conclusion

Harbor design

- A hybrid architecture for collaborative vehicular sensing
 - Leverages both V2V and V2I network access
 - Flexibly manages V2V and V2I connections
- Strategic helper assignment
- Timely detection result delivery

Strategic helper assignment - Goal

- Goal: Efficiently assign helpers to helpees to speedup sensor data upload
 - Different helpers have different V2I and V2V conditions
- End-to-end upload performance depends on network performance on both the <u>V2V path</u> and the <u>V2I path</u>
- Key idea: Identify performance impacting factors for V2V and V2I and combine these factors to score the assignments
 - Direct measures: V2V & V2I bandwidth
 - Indirect measures: factors that affects V2V & V2I bandwidth (e.g. distance, interference)

Identify performance impacting factors

- Both V2V and V2I paths' performance matter
 - V2I bandwidth can be measured from V2I path
 - \rightarrow Measured from ongoing data transfer to the edge server
 - However, V2V bandwidth is hard to quantify
 - Measured bandwidth by establishing connections? → Large overhead, can be inaccurate
 - \rightarrow Using indirect measures and heuristics
- Performance impacting factors
 - V2I path: V2I bandwidth and load of helper
 - V2V path: Physical distance between helper and helpee, V2V network interference

Strategic helper assignment - Overview

- Harbor jointly considers different factors and selects an assignment with the analytical model
 - A heuristic score function to merge effects caused by different factors
 - Normalize each factor to avoid a single factor becoming dominant
 - Run periodically to adapt to vehicle mobility & network state changes

Assignment
$$A = \{a_1, a_2, ..., a_n\}$$

Assignment pair $a_k = (e_i, r_j)$
helpee helper

 $Score(a_k) = S_{dist}(a_k) + S_{intf}(a_k)$ $Score(A) = f(Score(a_1), ..., Score(a_m))$ $maximize \ Score(A) \ s.t. \ C_{bw}(a) \ge 0, \ \forall \ a \in A$

Timely delivery of detection results

- It is vital to deliver remote detection results back to vehicles in time
- Key idea: **Application-layer** deadline awareness
- Application-layer deadline awareness
 - Server deadline for frame merging and detection
 - Vehicles use existing time synchronization methods (NTP) to sync with the edge

Timely delivery of results - MAC layer prioritization

- In V2V network, sensor data transmission (by helpee) and detection result delivery (from helper) contend for the shared wireless medium
- Key Idea: Prioritize small but latency sensitive traffic over bulk data transfer

- Background and Motivation
- System Design
- Evaluation Results
- Conclusion

End-to-end evaluation - Emulation

- Evaluation Metrics
 - End-to-end detection latency (s) and detection accuracy
 - Compare with different baseline schemes

End-to-end evaluation – Real-world Driving

 Harbor outperforms EMP, AVR and CarSpeak by reducing 18% - 37% of detection latency and improving 8.0% - 11.0% on accuracy.

End-to-end Evaluation – Mcity Testbed

- Harbor achieves the best perception accuracy compared with EMP^[1] and AVR^[2]
- Harbor delivers better autonomous driving outcome by increasing the driving reaction time and reducing crash scenarios

Traffic Scene	Object Detection Acc./Drivable Space Detection Acc.				
	Local-only	EMP	AVR	Harbor	
Testbed-Overall	42.67/40.77%	69.84/57.89%	69.90/52.53%	82.08/70.67%	
- Right turn	28.91/33.28%	59.60/53.84%	42.66/49.59%	77.93/71.44%	
- Left turn A	34.60/44.57%	81.16/59.79%	79.49/57.25%	83.55/63.87%	
- Left turn B	35.94/44.48%	79.50/58.12%	61.53/55.86%	81.30/72.89%	
- Lane merge	71.25/40.78%	72.52/59.81%	80.46/47.43%	87.57/74.51%	

Table 3: Collaborative perception accuracy under differentcollaboration schemes.

Table 4: Additional driving reaction time (compared to Localonly) and outcome of different collaboration schemes.

Traffic Scene	Additional Reaction Time (s)/Driving Outcome				
Traine Seene	EMP	AVR	Harbor		
Testbed-Overall	+ 0.76/1 crash	+ 0.58 /1 crash	+ 1.26/0 crash		
- Right turn	+ 0.69/safe-pass	+ 0.41/crash	+ 1.60/safe-pass		
- Left turn A	+ 1.05/safe-pass	+ 0.20/safe-pass	+ 1.23/safe-pass		
- Left turn B	+ 0.73/crash	+ 1.13/safe-pass	+ 1.42/safe-pass		
- Lane merge	+ 0.57/near-miss	+ 0.57/near-miss	+ 0.79/safe-pass		

Notes: A near-miss occurs when the ego and target vehicle pass within 3 m of each other.

- Background and Motivation
- System Design
- Evaluation Results
- Conclusion

Conclusion

- Develop *Harbor*, a hybrid system architecture for cooperative vehicular perception
- Harbor strategically assigns helpers to helpees
 - Harnesses performance impacting factors from different network layers
- Harbor performs timely detection result delivery
 - App-layer deadline awareness and MAC-layer message prioritization
- Harbor outperforms V2V and V2I collaboration solutions
 - Reduces up to 57.1% in end-to-end latency and improves up to 12% in detection accuracy
 - Result in significantly fewer collisions under dangerous driving scenarios

Thank You!

Our Team