
Research Track Systems and Infrastructure for Web, Mobile, and WoT

QUIC is not Quick Enough over Fast Internet
Xumiao Zhang1, Shuowei Jin1, Yi He1, Ahmad Hassan2, Z. Morley Mao1, Feng Qian2, Zhi-Li Zhang3

1University of Michigan 2University of Southern California 3University of Minnesota

1. Introduction and Background
QUIC is a user-space transport protocol over UDP. It is expected to be a
game-changer in improving web application performance. Initially proposed
and developed by Google (gQUIC) to enable fast, reliable, and secure
connections, it was later refined by an IETF working group. They separate its
fused transport, cryptographic handshakes, and HTTP functionalities into
parts, leading to the standardization of IETF QUIC. As the application layer
wrapper for QUIC, HTTP/3 was structured to integrate seamlessly with QUIC
while maintaining compatibility with existing HTTP/2 functionalities. Together
with the network layer and layers below, UDP, QUIC, and HTTP/3 form a new
protocol stack for the next-generation network communication, whose current
counterpart is the stack of TCP, TLS, and HTTP/2.

QUIC’s Benefits:
● 0/1-RTT Connection Establishment/Resumption
● Stream Multiplexing without Head-of-Line Blocking
● Integrated Security with TLS 1.3
● Connection Migration

5. Root Cause Analysis
We identify root causes for the QUIC-HTTP/2 performance gap.

Eliminating Non-contributing Factors: server software, UDP/TCP, HTTP
syntax, TLS encryption, parameter tuning, client OS, disk and memory.
Evidence from Packet Trace Analyses:
● QUIC perceives much more packets than HTTP/2 during file download.
● QUIC has much higher RTT dominated by local processing, 16.2 vs 1.9ms.
Root Cause Analysis via OS/Chromium Profiling:
● Fine-grained profiling in the kernel and user spaces reveals the “culprit”.
● QUIC’s slowness is due to receiver-side processing

○ Root causes: excessive data packets, QUIC’s user-space ACKs

2. Motivation and Challenges
QUIC has attracted wide research attention. However, existing studies use
diverse QUIC implementations (customized vs. commercial), compute
environments (mobile vs. desktop), and network conditions (wired vs.
wireless). Due to such diversity, their findings are a mixture of performance
gains and degradations, compared to TCP or earlier generations of HTTP.
Moreover, many of these studies focus on low-throughput use cases.

We advocate examining QUIC in the “context” of specific services and
scenarios. In this study, we systematically study QUIC in an under-explored
scenario, running QUIC over high-speed networks.

QUIC
 Stream multiplexing
 Congestion, flow control
 Record layer encryption
 Transport handshake

TLS
 Crypto handshake

HTTP/2
 HTTP semantics mapping
 Stream multiplexing
 Stream flow control

TLS
 Crypto handshake
 Record layer encryption

TCP
 Congestion, flow control
 Transport handshake

HTTP/3
 HTTP semantics mapping

UDP

IP

User
space

Kernel
space

We conduct a series of experiments to compare the UDP+QUIC+HTTP/3
(QUIC) stack with the TCP+TLS+HTTP/2 (HTTP/2) stack. We focus on their
performance in HTTP file download, video streaming, and web page loading.

Experimental Setup:
● Ubuntu 18.04 client and server
● 1 Gbps Ethernet, 2 hops away
● OpenLiteSpeed (v1.7.15, based on LSQUIC)
● Increased TCP/UDP buffer sizes to exceed link’s BDP

1Gbps Ethernet 1Gbps Ethernet
Ubuntu

Middlebox

3. Methodology

4. Performance Comparison (Cont.)
Exp. 2.1: File Download on Real Browsers (Chrome)
● A more significant performance gap between the two protocol stacks.
● QUIC fails to fully utilize the bandwidth starting earlier.

(1) Different file sizes (Throughput and CPU usage) (2) Difference available bandwidth

Exp. 2.2: File Download on Different QUIC-capable Browsers
Extend the HTTP file download experiments and Yield similar observations.
● All browsers have a degraded QUIC performance when QUIC is enabled.
● CPU usage and the number of transmitted packets increase for QUIC.

Exp. 3.1: Application Study - Video Streaming
4K video, 6 tracks, 3 chunk durations; 2 ABR algorithms (buffer/rate-based).
● QUIC performs worse than HTTP/2 in Ethernet and 5G scenarios.
● The performance difference is not very significant in 4G.

Exp. 3.2: Application Study - Web Browsing
Web page load involves the transfer of multiple small objects.
● Most websites have not enabled QUIC yet.
● The performance gap is not as pronounced as that in the video tests.
● QUIC’s page load time is 3.0% longer; Long tail of time gaps over 50%.

CDT: content
download time

PLT: page load
time

TTFB: time to
first byte

Exp. 1: File Download on Lightweight Clients (cURL and quic_client)
● Both tools running QUIC have lower throughput than cURL with HTTP/2.
● QUIC’s CPU usage is also higher.
● QUIC loses to HTTP/2 at high throughput due to limited computation.

4. Performance Comparison

(1) Different file sizes (Throughput and CPU usage) (2) Difference available bandwidth

6. Recommendations for Mitigation
We make several recommendations for mitigating the observed issues.
● Adoption of UDP GRO (generic receive offload) on the Receiver Side
● QUIC-friendly Improvements to the offloading solution
● Optimizing QUIC logic on the Receiver Side
● Multi-threaded download for large files

(1) Stream over Ethernet (2) Stream over 5G (3) Stream over 4G

Exp.: Parallel download

Increasing the number
of instances reduces
the download time.

